
f 6INFORMATION PROCESSING 86. H.-"]. Kuglei fed.)
Elscvier Science Publishers BA'. (North-Holland)
©IFIP. 1956 &Q2& j £nort

NO SILVER BULLET
ESSENCE AND ACCIDENTS OFtSOFTWARE ENCINEERIN

Frederick P. BROOKS Jr.
Kenan Professor of Computer Science, University of North Carolina at Chape] Hill
New West Hall 035A, Chapel Hill, North Carolina 275 14, U.S.A.

//;

vited Paper

All software construction involves essential task3, the fashioning of the complex conceptual structures that
compose the abstractsoftware entity, and accidental tasks, the representation of these abstract entities in pro-
gramming languages and the mappingof these ontomachine languages within space and speed constraints. Most
of the big past gains in software productivity have come from removing artificial barriers that have made the
accidental tasks inordinatelyhard, such as severe hardware constraints, awkward programming languages, lack
of machine time. How much of what softwareengineers now do is still devoted to the accidental, as opposed to
theessential? Unless it 13 more than 9/10 of all

effort,

shrinking all the accidentalactivities to zero time will not
give an order of magnitude improvement.

Therefore it appears that the timehas come to address the essentialparts of the software task, those concerned
with fashioning abstract conceptual structures of great complexity. I suggest:

exploiting the mass market to avoid constructing what can be bought.
using rapid prototyping as part of a planned iteration in establishing software requirements.
growing software organically, adding more and more function to systems as they are run, used, and tested.
identifying and developing the great conceptual designers of the rising generation.

1. INTRODUCTION

Of all the monsters who fill the nightmares ofour

folklore,

none terrify more than werewolves,because they transform
unexpectedlyfrom the familiar into horrors. For these,one
seeks bullets ofsilver that can magically lay them to rest.

The familiar software project has something of this char-
acter (at least as seen by the non-technical manager), usu-
ally innocent and straightforward,but capableofbecoming
a monster of missed schedules, blown budgets, and flawed
products. So we hear desperate cries for a silver bullet,
something to makesoftware costs drop.as rapidly as com-
puter hardware costs do.

But, as we look to the horizonof adecadehence, we see no
silverbullet. There is nosingle development,in either tech-
nology or management technique, which by itselfpromises
even one order of magnitude improvement in productivity,
in reliability, in simplicity. In this paper we shall try to see
why, both by examining the nature of the softwareproblem
and the properties of the bulletsproposed.

Skepticism b not pessimism, however. Although we see
no startling breakthroughs, and indeed, believe such to be
inconsistent with the nature of

software,

many encourag-
ing innovations are under way. A disciplined, consistent
effort to develop, propagate, and exploit them should in-
deed yield an order-of-magnitude improvement. There is
no royal road, but there is a road.

The first step toward the management of disease was re-
placement of demon theories and humours theories by the
germ theory. That very step, the beginning of hope,in itself
dashed all hopes of magical solutions. It toldworkers that
progress would be made stepwise, at great

effort,

and that
a persistent, unremitting care would have to be paid to a
discipline of cleanliness. So it is with softwareengineering
today.

2. DOES IT HAVE TO BE HARD? -
ESSENTIAL DIFFICULTIES

Not only are there no silver bullets now in view, the very
nature ofsoftwaremakes it unlikely that therewillbe any -

no inventions thatwill dolor softwareproductivity^ reliabil-
ity, and simplicity what electronics, transistors, large-scale
integration did for computer hardware. We cannot expect
ever to see two-foldgains everytwo years.

First, one must observe that the anomaly is not that soft-
ware progress is so slow, but that computer hardware
progress is so fast. No other technology since civilization
began has seen six orders of magnitude price-performance
gain in 30 years. In no other technology can one choose
to take the gain in either improved performance or in re-
duced costs. These gains flow from the transformation of
computer manufacture from an assembly industry into a
process industry.

Second,

to see whatrate of progress one can expect in soft-
ware technology, let us examine its difficulties. Following
Aristotle,I dividethem into essence, the difficulties inher-
ent in the nature of the

software,

and accidents, those dif-
ficulties which today attend its production but which are
not inherent.
The accidents I discuss in the next section. First let us
consider the essence. -
The essence of a softwareentity is a construct of interlock-
ing concepts:"* data sets, relationships among data items,
algorithms, and invocations of functions. This essence is
abstract, in that the conceptual construct is the same un-
der many different representations. It is nonethelesshighly
precise and richly detailed.

/ believe the hard part of building software to be the spec-
ification, design, and testing of this conceptual construct,
not the labor of representing it and testing the fidelity of
the representation. We still make syntax errors, to be sure;
but they are fuzz compared to the conceptualerrors in most
systems.

If this is true, building softwarewill always be hard. There
is inherently no silver bullet.

Let us consider the inherent properties of this irreducible
essence of modern software systems: complexity, confor-

J'.P Brooks1070

t

t

rrvity, changeability, and invisibility

2.1 Complexity

Software entities are more complex for their size than per-
haps any other human construct, because no two parts are
alike (at least above the statement level). If they are, we
make the two similar parts into one, a subroutine, open or
closed. In this respect software systems differ profoundly
from computers, buildings, or automobiles,where repeated
elements abound.

Digital computers are themselves more complex than most
things people build; they have very large numbersofstates.
This makes conceiving, describing, and testing them hard.
Softwaresystems have orders ofmagnitude more states than
computers do.

Likewise, a scaling-up of a software entity is not merely a
repetition of the same elements in larger size, it is necessar-
ily an increase in the number of different elements. In most
cases, the elements interact with each other in some non-
linear

fashion,

and the complexity of the whole increases
much more than linearly.

The complexityof software is an essential property, not an
accidentalone. Hence descriptionsof a software entity that
abstractawayits complexity often abstractawayitsessence.
Mathematics and the physical sciences for three centuries
made great strides by constructing simplified models of
complex phenomena, deriving properties from the models,
and verifying those propertiesexperimentally. This worked
because the complexities ignored in the models were not
the essentialproperties of the phenomena. It doesnot work
when the complexitiesare the essence.

Many of the classicalproblems ofdevelopingsoftwareprod-
ucts derivefrom this essentialcomplexityand its non-linear
increases with size. From the complexity comes the diffi-
culty of communicationamong team members,which leads
to product

flaws,

cost overruns,schedule delays. From the
complexity comes the difficulty of enumerating, much less
understanding, all the possible states of the program, and
from that comes the unreliability. From the complexity of
the functions comes the difficulty of invoking those func-
tions, which makesprograms hard to use. From complexity
of structure comes the difficulty of extending programs to
new functions without creatingside effects. From complex-
ity ofstructure come the unvisuaiized states that constitute
security trapdoors.

Not only technical problems, but management problems as
well come from the complexity. It makes overview hard,
thus impeding conceptual integrity. It makes it hard to find
and control all the loose ends. It creates the tremendous
learning and understanding burden that makes personnel
turnover a disaster.

2.2 Conformity

Softwarepeople are not alone in facing complexity. Physics
deals with terribly complex objects even at the "fundamen-
tal" particle level. The physicist labors on, however,in a
firm faith that there are unifying principles to be

found,

whether in quarks or in unified field theories. Einstein re-
peatedly argued that there must be simplified explanations
of nature, because God is not capricious or arbitrary.

No such faith comforts the software engineer. Much of the
complexity he must master is arbitrary complexity, forced
without rhyme or reason by the many human institutions
and systems to which his interfaces must conform. These
differfrom interface to

interface,

and from time to time, not
because ofnecessity but only because they were designed by
different people,rather than by God.

In many cases the software must conform because it has
most recently come to the scene. In others it must conform
because it is perceived as the most conformable. But in all
cases, much complexity comes from conformation to other

interfaces;

this cannot be simplified out by any redesign of
the software alone.

2.3 Changeability

The software entity is constantly subject to pressures for
change. Of course, so are buildings, cars, computers. But
manufactured things are infrequently changed after man-

ufacture;

they are superseded by later models, or essen-
tial changes are incorporated in later serial-numbercopies
of the same basic design. Call-backs of automobiles are
really quite infrequent; field changes of computers some-
what less so. Both are much less frequent than modifica-
tions to fielded software.

Partly this is because the software in a system embodies
its function, and the function is the part which most feels
the pressures of change. Partly it is because software can
be changed more easily - it is pure thought-stuff, infinitely
malleable. Buildings do in fact get changed,but the high
costs of change, understood by all, serve to dampen the
whims of the changers.

All successful software gets changed. Two processes are at
work. As a software product is found to be

useful,

people
try it in new cases at the edge

of,

or beyond, the original
domain. The pressures for extended function come chiefly
from users who like the basic function and invent new uses
for it.

Successful software also survives beyond the normal life of
the machine vehicle for which it is first written. If not
new computers, then at leastnew disks, new displays, new
printers come along; and the software must be conformed
to its new vehicles of opportunity.

In short, the software product is embedded in a cultural
matrix of applications, users, laws, and machine vehicles.
These all change continually, and theirchanges inexorably
force change upon the softwareproduct.

2.4 Invisibility

Software is invisible and unvisualizable. Geometric ab-
stractions are powerful tools. The floor plan of a build-
ing helps both architect and client evaluate spaces, traffic
flows, views. Contradictionsbecome obvious,omissionscan
be caught. Scale drawings of mechanical parts and stick-
figure modelsof molecules,although abstractions, serve the
same purpose. A geometric reality is captured in a geomet-
ric abstraction.
The reality of Boftw&re is not inherently embeddedin space.
Hence it has no ready geometric representation in the way
that land has maps, silicon chips have diagrams, comput-
ers have connectivity schematics. As Boon as we attempt
to diagram software structure, we find it to'constitute not
one,but several,general directed graphs, superimposedone
upon another. The several graphs may represent the flow
of control, the flow of data, patterns of dependency, time
sequence, name-space relationships. These are usually not
even planar, much less hierarchical. Indeed, one of the wayß
of establishing conceptual control over such structure is to
enforce link cutting until one or more of the graphs becomes
hierarchical {1).

In spite of progress in restricting and simplifying the struc-
tures of

software,

they remain inherently unvisualizable,
thus depriving the mind of some of its most powerful con-
ceptual tools. This lack not only impedes the process of
design within one mind, it severely hinderß communication
among minds.

So Silver Bullet — Essence and Accidents ofSoftware Engineering 1071

>

3. PAST BREAKTHROUGHS SOLVED
ACCIDENTAL DIFFICULTIES

If we examine the three steps in software technology that
have been most fruitful in the past, we discover that each at-
tacked a different major difficulty in building

software,

but
they havebeen the accidental,not the essential, difficulties.
We can also see the natural limits to the extrapolation of
each such attack.

3.1 High-Level Languages

Surely the most powerful stroke for software productiv-
ity, reliability, and simplicity has been the progressive use
of high-level languages for programming. Most observers
credit that development with at least a factor offive in pro-
ductivity, and with concomitant gains in reliability, simplic-
ity, and comprehensibility.

What does a high-level language accomplish? It frees a
program from much of its accidental complexity. An ab-
stract program consists of conceptual constructs: oper-
ations, data-types, sequences, and communication. The
concrete machine program is concerned with bits, registers,
conditions, branches, channels, disks, and such. To the ex-
tent that the high-level language embodies the constructs
one wants in the abstract program and avoids all lowerones,
it eliminates a whole level of complexity that was never in-
herent in the program at all.

The most a high-level language can do is to furnish all the
constructs the programmer imagines in the abstract pro-
gram. To be sure, the level ofour sophisticationin thinking
about datastructures, data types, and operationsis steadily
rising, but at an ever-decreasing rate. And language devel-
opment approaches closer and closer to the sophistication
ofusers.

Moreover,at some point theelaborationofa high-level lan-
guage becomes a burden that increases, not reduces, the
intellectual task of the user who rarely uses the esoteric
constructs.

3.2 Time-Sharing

Most observers credit time-sharing with a major improve-
ment in the productivityof programmersand in the quality
of their product, although not so large as that brought by
high-level languages.
Time-sharing attacks a quite different difficulty. Time-
sharing preserves immediacy, and hence enables one to
maintain an overview of complexity. The slow turnaround
of batch programming means that one inevitably forgets
the minutae,if not the very thrust, of whathe was thinking
when he stopped programming and called for compilation
and execution. This interruptionof consciousness is costly
in time, for one must refresh. The most serious effect may
well be the decay ofgrasp ofall that is goingon in a complex
system.

Slow turn-around, like machine-language complexities, is
an accidental rather than an essential difficulty of the soft-
ware process. The limitsof the contributionof time-sharing
derive directly. The principal effect is to shorten system re-
sponse time. As it goes to zero, at some point it passes the
human threshold of noticeability, about 100 milliseconds.
Beyond that no benefits are to be expected.

3.3 UnifiedProgramming Environments

Unix and Interlisp, the first integrated programming en-
vironments to come into widespread use, are perceived to
have improved productivity by integral factors. Why?

They attack the accidental difficulties of using programs
together, by providing integrated libraries, unified file for-

mat

3,

and pipes and filters. As a result, conceptual struc-
tures that in principle could always call,

feed,

and use one
another can indeed easily do so in practice.

This breakthrough in turn stimulated the development of
whole toolbenches,since each new toolcould be applied to
any programs using the standard formats.
Because of these successes, environments are the subject of
much of today's software engineering research. We will look
at their promise and limitations in the next section.

4. HOPES FOR THE SILVER

Now let us consider the technical developments that are
most often advancedas potential silver bullets. What prob-
lems do they address? Are they the problems of essence, or
are they remainders of our accidental difficulties? Do they
offer revolutionary advances, or incremental ones?

4.1 Ada and other High-Level Language Advances

One of the most touted recent developments i3the pro-
gramming language Ada, a general-purpose high-level lan-
guage of the '80s. Ada indeedreflects not only evolutionary
improvements in language concepts, but embodies features
to encourage modern design and modularization concepts.
Perhaps the Ada philosophyis more ofan advance than the
Adalanguage, for.it is the philosophy of modularization,of
abstractdata types, ofhierarchicalstructuring. Ada is per-
haps over-rich, the natural product of the process by which
requirements were laid on its design. That is not

fatal,

for
subset working vocabulariescan solve the learningproblem,
and hardwareadvanceswill give us the cheap MIPS to pay
for the compiling costs. Advancing the structuring of soft-
ware systems is indeed a very good use for the increased
MIPS our dollars will buy. Operating systems, loudly de-
cried in the '60's, have proved to be an excellent form in
which to use some ofthe MIPS and cheap memory bytes of
the past hardwaresurge.

Nevertheless,Ada will not prove to be the silverbullet that
slays the softwareproductivity monster. It is, after all, just
another high-level language, and the biggest payoff from
such languages came from the first transition,up from the
accidental complexities of the machine into the more ab-
stract statement of step-by-step solutions. Once those ac-
cidents havebeenremoved, the remaining ones are smaller,
and the payoff from their removal will surely be less.
I predict that a decade from now, when the effectiveness of
Ada is assessed, it willbe seen to have madea substantial
difference, but not because of any particular language fea-
ture, nor indeed of all of them combined. Neither will the
new Adaenvironmentsprove to be the cause of the improve-
ments. Ada's greatest contribution will be that switching
to it occasioned training programmers in modern, software
design techniques.

4.2 Object-Oriented Programming

Many students of the art hold out more hope for object-
oriented programming than for any of the other technical
fads of the day {2}. I am among them. Mark Sherman of
Dartmouth notes that one must be careful to distinguish
two separate ideas that go under that name: abstractdata
types and hierarchical types, abo called classes. The con-
cept ofthe abstract datatype is that an object's typeshould
be defined by a name, a set of proper values, and a set of
proper operations,rather than its storage structure, which
should be hidden. Examples are Ada packages(withprivate
types) or Modula's modules.

Hierarchic&l types, such as Simula-67's classes, allow one
to define general interfaces that can be further refined by
providing subordinate types. The twoconcepts are orthog-
onal - one may have hierarchieswithout hiding and hiding

F.P. Brooks

1072

I

'i

without hierarchies. Both concepts represent real advances
in the art of building software.

"

-

■

-
Each removes ODe more accidental difficulty from the pro-
cess, allowing the designer to express the essence of his de-
sign without having to express large amounts of syntactic
material that add no new information content. For both
abstract types and hierarchical types, the result is to re-
move a higher-order sort of accidental difficulty and allow
a higher-order expressionof design.

Nevertheless,such advances can do no more than to remove
all the accidental difficultiesfrom the expressionof the de-
sign. The complexity of the design itself is essential; and
such attacks make no change whatever in that. An order-of-
magnitude gain can be made by object-oriented program-
ming only if the unnecessary underbrush of type specifica-
tion remaining today in our programming language is itself
responsible for nine-tenths of the work involved in designing
a program product. I doubtit.

4.3 Artificial Intelligence

Many people expect advances in artificial intelligence to
provide the revolutionarybreakthrough thatwill give order-
of-magnitude gains insoftwareproductivity and quality {3}.
I donot. Tosee why, we must dissectwhatis meant by "ar-
tificial intelligence*, and then see how it applies.

Parnas has clarified the terminologicalchaps {4):
Two quite different definitions of Al are in com-
mon use today. Al-1: The use of computers to
solveproblems thatpreviously could only be solved
by applying human intelligence. AI-2: The use of
a specific set of programming techniques known
as heuristic or rule-based programming. In this
approach human experts are studied to determine
what heuristics or rules of thumb they use in solv-
ing problems The program is designedto solve
a problem the way that humans seem to solve it.
The first definition has asliding meaning Some-
thing can fit the definition of AI-1 today but, once
we see bow theprogramworksand understand the
problem, we will not think of it as Al any more.... Unfortunately I cannot identify a body of tech-
nology that is unique to this field Most of the
work is problem-specific, and some abstraction or
creativity is required to see how to transfer it.

I agree completely with this critique. The techniquesused
for speech recognition seem to have little in common with
those ussd for image recognition, and both are different
from those used in expert systems. I have a hard time
seeing how image recognition, for example, will make any
appreciable difference in programming practice. The same
is true of speechrecognition. The hard thing aboutbuilding
software is deciding what one wants to say, not saying it.
No facilitation of expression can give more than marginal
gains.

Expert systems technology, Al-2, deserves a section of its
own.

4.4 Expert Systems

The most advanced part of the artificial intelligence art,
and the most widely applied,is the technology for building
expert systems. Many Boftware scientists are hard at work
applying this technology to the software-buildingenviron-
ment (5) and {6}. What is the concept, and what are the
prospects?

An expert system is a program containing a generalized
inference engine and a rule base, designed to take input
data and assumptions and explore the logical consequences
through the inferences derivablefrom therule base, yielding

conclusions ajid advice,and offering to explainits results by
retracing its reasoning for the

ÜBer.

The inference engines
typically can deal with fuzzy or probabilistic data and rules
in addition to purely deterministic logic.

Such systems offersome clear advantages over programmed
algorithms for arriving at the same solutions to the Bame
problems:

Inference engine technology is developed in an
application-independentway,and then appliedto many
uses. One can justify much more effort on the inference
engines. Indeed, that technology is well advanced.
The changeable parts of the application-peculiarmate-
rials are encoded in the rule base in a uniform

fashion,

and tools are provided for developing,changing, test-
ing, and documenting the rule base. This regularizes
much of the complexityof the application itself.

Edward Feigenbaum, says that the power of such systems
does not come from ever-fancier inference mechanisms, but
rather from ever-richer knowledge bases thatreflect the real
world more accurately. I believe the most important ad-
vance offered by the technology is the separation of the ap-
plication complexity from the program itself.
How can this be applied to the software task? In many
ways: suggesting interfacerules, advisingon testing strate-
gies, remembering bug-type frequencies, offering optimiza-
tion hints, etc.

Consider an imaginary testing advisor,for example. In its
mostrudimentary

form,

the diagnostic expertsystem is very
like a pilot'b checklist, fundamentally offeringsuggestions as
to possible causesofdifficulty. As therule base is developed,
the suggestions become more specific, taking more sophis-
ticated account of the trouble symptoms reported. One
can visualize a debugging assistant which offers very gen-
eralized suggestions at

first,

but as more and more system
structure is embodied in the rule base, becomes more and
more particular in the hypotheses it generatesand the tests
it recommends. Such an expert system may depart most
radically from the conventional ones in that its rule base
should probably be hierarchically modularizedin the same
way the corresponding software product is, so that as the
product is modularly

modified,

the diagnosticrule base can
be modularly modified as well.

The work required to generate the diagnostic rules is work
that will have to be done anyway in generating the set of
test cases for the modules and for the system. If it is done
in a suitably general manner, with a uniform structure for
rules and a good inference engine available,it may actually
reduce the total labor of generating bring-up test cases, as
well as helping in life-long maintenance and modification
testing. In the same way,one can postulate other, probably
many and probably simple, advisors for the other parts of
the software construction task.
Many difficulties stand in the way of the early realization
of useful expert advisers to the program developer. A cru-
cial part of our imaginary scenario is the development of
easy wayß to get from program structure specification to
the automatic or semiautomatic generation of diagnostic
rules. Even more difficultand important is the two-fold task
ofknowledge-acquisition: finding articulate,self-analytical
experts whoknow why they do things; and developing effi-
cient techniques for extracting what they know and distill-
ing it into rule bases. The essentialprerequisite for building
an expert system is to have aji expert.

The most powerful contribution of expert systems will
surely be to put at the service of the inexperienced pro-
grammer the experience and accumulated wisdom of the
best programmers. This is no small contribution. The gap
between the best software engineering practice and the ay-

.Yo Silver Bulla - Essence and Accidents oj(Software Engineering 1073

erage practice is very wide - perhaps wider than in any
other engineering discipline. A tool that disseminates good
practice would be important.

4.5 "Automatic" Programming

For almost40years,peoplehave been anticipatingand writ-
ing about "automatic programming, the generation of a
program for solving a problemfrom astatement of theprob-
lem specifications. Some today write as if they expected this
technology to provide the next breakthrough {7}.

Parnas {8} implies that the term is used for glamor and not
semantic content, asserting,

In short, automatic programming always has been
a euphemism for programming with a higher-level
language than was presently available to the pro-
grammer.

He argues, in essence, that in most cases it is the solu-
tion method, not the problem, whose specification has to
be given.

One can find exceptions. The technique of building gen-
erators is very powerful, and it is routinely used to good
advantage in programs for sorting. Some systems for in-
tegrating differential equations have also permitted direct
specification of the problem, and the system assessed the
parameters, chose from a library of methods of solution,
and generated the programs.

These applications have very favorableproperties:

The problems arereadily characterizedby relativelyfew
parameters.
There are many known methods of solution to provide
a library of alternatives.

" Extensive analysis has led to explicit rules for selecting
solution techniques, given problem parameters.

It is tosee howsuch techniquesgeneralizeto the widerworld
of the ordinary softwaresystem, wherecaseswith such neat
properties are the exception. It is hard evento imaginehow
this breakthrough in generalizationcould conceivably occur.

4.6 Graphical Programming

A favorite subject for Ph.D. dissertations in software engi-
neering is graphical, or visual, programming, the applica-
tion of computer graphics to software design {9) and {10}.
Sometimes the promise of such an approach is postulated
from the analogy with VLSI chip design, where computer
graphics plays so fruitful a role. Sometimes the approach
is justified by considering flowcharts as the ideal program
design medium, and providing powerful facilities for con-
structing them.

Nothing even convincing, much less exciting, has yet
emerged from 3uch efforts. I am persuaded that nothing
will.
In the first place, as I have argued elsewhere {11}, the
flowchart is a very poor abstraction of software structure.
Indeed, it is best viewedas Burks, yon Neumann,and Gold-
stine's attempt to provide a desperately needed high-level
control language for their proposedcomputer. In the pitiful,
multi-page, connection-boxed form to which the flowchart
has today been elaborated,it has proved to be essentially
useless as a design tool - programmers drawflowcharts af-
ter, rather than

before,

writing the programs they describe.
Secondly, the screens of today are too small, in pixels,
to show both the scope and the resolution of any seri-
ous detailed software diagram. The so-called "desktop
metaphor" of today's workstation is instead an "airplane-
seat" metaphor. Anyone who has shuffled a lap full of pa-

pers while seated in coach between two portly passengers
will recognize the difference - one can 3ee only a very few
things at once. The true desktop provides overview of and
random access to, a score of pages. Moreover,when fits of
creativity run strong, more than one programmer or writer
has been known to abandon the desktop for the more spa-
cious floor. The hardware technology will have to advance
quite substantially before the scope of our scopes is suffi-
cient to the softwaredesign task.
More fundamentally, as I have argued above, software is
very difficult to visualize. Whether one diagrams control

flow,

variable scope nesting, variable

cross-references,

data

flow,

hierarchical data structures, or whatever, one feels
only one dimension of the intricately interlocked software
elephant. Ifone superimposesall the diagrams generated by
the many relevant views, it is difficult to extract any global
overview. The VLSI analogy is fundamentally misleading
- a chip design is a layered two dimensionalobject whose
geometry reflects its essence. A software system is not.

4.7 Program Verification

Much of the effort in modern programming goes into test-
ing and the repair of bugs. Is there perhaps a silverbullet
to be found by eliminating the errors at the source, in the
system design phase? Can both productivity and product
reliabilitybe radically enhancedby following theprofoundly
differentstrategy of proving designs correct before the im-
mense effort is poured into implementingand testing them?
I do not believe we will find the magic here. Program veri-
fication is a very powerful concept, and it will be very im-
portant for such things as secure operating system kernels.
The technology does not promise, however, to save labor.
Verifications are so much work that only a few substantial
programs have everbeen verified.
Program verification does not mean error-proofprograms.
There is no magic here, either. Mathematical proofs also
can be faulty. So whereas verification might reduce the
program- testing load, it cannot eliminateit.

More seriously, even perfect program verification can only
establish that aprogram meets its specification. The hard-
est part of the software task is arriving at a complete and
consistent specification, and much of the work of building
a program is in fact the debugging of the specification.

4.8 Environments and Tools

How much more gain can be expected from the exploding
researches into better programming environments? One's
instinctive reaction is that the big payoff problems were
the first attacked, and have been solved: hierarchical file
systems, uniformfile formats so as tohave uniform program

interfaces,

and generalized.tools. Language-specific smart
editors are developments not yet widely used in practice,
but the most they promise is freedomfrom syntacticerrors
and simple semanticerrors.

Perhaps the biggest gain yet to be realized in the program-
ming environment is the use of integrated databasesystems
tokeep track of the myriadsof detailsthat must be recalled
accurately by the individual programmer and kept current
tn a group of collaborators on a single system.

Surely this work is worthwhile, and surely it will bear some
fruit in both productivity and reliability. But by its very
nature, the return from now on must be marginal.

4.9 Workstations

What gains are to be expected for the software art from
the certain and rapid increase in the power and memory

1074 F.P. Brooks

)>

capacity of the individual workstation? Well, how many
MIPS can one use fruitfully? The composition.and"editing
of programs and documents is fully supported by today's
speeds. Compiling could stand a boost, but a factor of 10 in
machine speed wouldsurely leave think-time the dominant
activity in the programmer's day. Indeed, it appears to be
bo now.

More powerful workstations we surely welcome. Magical
enhancements from them we cannot expect.

5. PROMISING ATTACKS ON THE
CONCEPTUAL ESSENCE

Even though no technological breakthrough promises to
give the sort of magical results with which we are bo fa-
miliar in the hardware area, there is both an abundance
of good work going on now, and the promise of steady, if
unspectacular progress.
All of the technological attacks on the accidentsof the soft-
ware process are fundamentally limitedby theproductivity
equation:

time of task = frequency; X time;

If,

as I believe, the conceptual components of the task are
now taking most of the time, then no amount ofactivity on
the task components that are merely the expressionof the
concepts can give large productivity gains.

Hence we must consider those attacks that address the
essence of the software problem, the formulation of these
complex conceptual structures. Fortunately, some of these
are very promising.

5.1 Buy versusBuild

The most radical possiblesolution for constructing software
is not to construct it at all.
Every day this becomes easier, as more and more vendors
offer more and better software products for a dizzying va-
riety of applications. While we software engineers have la-
bored on production methodology, the personal computer
revolution has created not one, but many, mass markets
for software. Every newstand carries monthly magazines
which, sortedby machine type, advertise andreview dozens
of products at prices from a few dollarsto afew hundreddol-
lars. More specialized sources offer very powerful products
for the workstationand other Unix markets. Even software
tools and environments can be bought off-the-shelf. I have
elsewhere proposed a marketplace for individual modules.
Any such product is cheaper to buy than to build afresh.
Even at a cost of one hundred thousand dollars, a pur-
chased piece of software is costing only about as much as
one programmer-year. And delivery is immediate! Imme-
diate at least for products thatreally exist,products whose
developer can refer the prospect to a happy user. More-
over, such products tend to be much better documentedand
somewhat better maintained than home-grown software.

The developmentof the mass market is, I believe, the most
profound long-run trend in software engineering. The cost
of softwarehas always been development cost, not replica-
tion cost. Sharing that cost among even a few users radi-
cally cuts the per-user cost. Another way of looking at it
is that the use of n copies of a softwareBystem effectively
multiplies the productivity of its developers by n. That is
an enhancementof the productivityof the discipline and of
the nation.

The key issue, of course, is applicability. Can I use an
available ofl-tbe-Bhelfpackage to do my task? A surprising
thing has happened here. During the 'SO's and '60's, study
after study showed that users would not use off-the-shelf
packages for payroll, inventory control,accounts receivable,
etc. The requirements were too specialized, the case-to-case
variation too high. During the '80's, we find such packages
in high demand and widespread use. What has changed?

Not really the packages. They may be somewhat more gen-
eralized and somewhat more customizable than formerly,
but not much. Not really the applications, either. If any-
thing, the business and scientific needs today are more di-
verse, more complicated than they were twenty years ago.

The big changehas been in the hardware/software cost ra-
tio. The buyer of a two-milliondollar machine in 1960 felt
that he could afford $ 250,000 more for a customized payroll
program, one that slipped easily and non-disruptively into
the computer-hostile social environment. The buyer of a
$ 50,000 dollar officemachine today cannot conceivably af-
ford a customizedpayroll program; so he adapts his payroll
procedure to the packages available. Computers are now so
commonplace, if not yet so beloved, that the adaptations
are accepted as a matter of course.

There are dramatic exceptions to my argument that the
generalization of the software packages has changed little
over the years: electronic spreadsheetsand simpledatabase
systems. These powerful tools, so obvious in retrospect
and yet so late appearing, lend themselves to myriads of
uses, some quite unorthodox. Aj-ticles and even books now
aboundon how to tackleunexpected tasks with the spread-
sheet. Large numbers of applications that would formerly
have been written as custom programs in Cobol or Report
ProgramGenerator arenowroutinely donewith these tools.

Many users now operate their own computers day in and
day out on varied applications without ever writing a pro-
gram. Indeed, many of these userß cannot write new pro-
grams for their machines,but they are nevertheless adept
at solvingnew problems with them.

I believe the single most powerful software productivity
strategy for many organizations today is to equip the
computer-naive intellectual workers on the firing line with
persona]computers and good generalized writing, drawing,
file, and spreadsheet programs, and turn them loose. The
same strategy, with generalized mathematical and statis-
tical packages and some simple programming capabilities,
will also work for hundreds of laboratoryscientists.

5.2 Requirements Refinement and Rapid
Prototyping

The hardest single part of buildinga softwaresystem is de-
ciding precisely what to build. No other part of4he concep-
tualwork is so difficult as establishing the detailed technical
requirements, including all the interfaces to people, tp ma-
chines, and toother software Bystems. No other part of the
work so cripples the resulting system if done wrong. No
other part is more difficult to rectify later.

Therefore the most important function that the »oftware
builder does for his client is the iterative extraction and
refinement of the product requirements. For the truth is,
the client does not know what he wants. He usually does
not know what questions must be answered, and he almost
never has thought of theproblem in the detail that must be
specified. Even the simple answer - "Make the newsoftware
system work like our old manual information-processingsys-
tem" - is in fact too simple. One neverwants exactly that.
Complex software Bystems are, mdreover, thingß that act,
that move, that work. The dynamics of that action are

I
A'o SilverBullet - Essence and Accidents of Software Engineering 1075

k

$

hard to imagine. So in planning any software activity, it
is necessary to allow for an extensive iteration between the
client and the designer as part of the system definition.

I would go a step further and assert that it is really impos-
sible for a client, even working with a software engineer,
to specify completely, precisely, and correctly the exact
requirements of a modern software product before having
built and tried some-yersions ofthe product he is specifying.

Therefore one of the most promising of the current techno-
logical

efforts,

and one which attacks the essence, not the
accidents, of the software problem, is the developmentof
approaches and tools for rapid prototyping of systems as
part of the iterative specification of requirements.

A prototypesoftware system is one which simulates the im-
portant interfaces and performs the main functions of the
intended system, while not being necessarily bound by the
same hardware speed, size, or cost constraints. Prototypes
typically perform the mainline tasks of the application, but
make no attempt to handle the exceptions, respond cor-
rectly to invalid inputs, abort cleanly, etc. The purpose
of the prototype is to make real the conceptual structure
specified, so that the client can test it for consistency and
usability.

Much of present-day software acquisition procedures rests
upon the assumption that one can specify a satisfactory
system in advance, get bids for its construction, have it
built, and install it. I think this assumption is fundamen-
tally wrong, and that many software acquisition problems
spring from that fallacy. Hence they cannot be fixed with-
out fundamental revision, one which provides for iterative
developmentand specification of prototypesand products.

5.3 IncrementalDevelopment - Grow, not Build,
Software

I still remember the jolt I felt in 1958 when I first heard a
friend talkabout building a program, as opposedto writing
one. In a flash he broadened my whole viewof the software
process. The metaphor shift was powerful, and accurate.
Today we understand how like other buildingprocesses the
constructionof softwareis, and we freelyuse other elements
of the metaphor, such as specifications, assembly of compo-
nents, and scaffolding.

The building metaphor has outlivedits usefulness. It is time
to change again.

If,

as I believe, the conceptual structures
we construct today are too complicated to be accurately
specified in advance, and too complex tobe built faultlessly,
then we must take a radically different approach.

Let us turn to nature and study complexity in living things,
instead of just the dead works of man. Here we find con-
structs whose complexities thrill us with awe. The brain
alone is intricate beyond mapping, powerful beyond imi-
tation, rich in diversity, self-protecting, and self-renewing.
The secret is that it is grown, not built.

So it must be with our software systems. Some years ago
Harlan Mills proposed that any softwaresystem should be
grown by incremental development {12). That is, the sys-
tem should first be made to run, even though it does noth-
ing useful exceptcall the proper setofdummysubprograms.
Then, bit by bit it is fleshed out, with the subprograms in
turn being developedinto actions orcalls to empty 3tubs in
the level below.

I have seen the most dramatic results since 1 began urg-
ing this technique on the project builders in my Software
Engineering Laboratory class. Nothing in the past decade
has so radically changed my own practice, or its effective-
ness. The approach necessitates top-down design, for it is a

top-down growing of the software. It allows easy backtrack-
ing. It lends itself to early prototypes. Each added function
and new provision for more complex data or circumstances
grows organically out of what is already there.

The morale effects are startling. Enthusiasm jumps when
there is a running system, even a simple one. Efforts re-
doublewhen the first picture from a new graphics software
system appears on the screen, even if it is only a rectangle.
One always has, at every stage in the process, a working
system. I find that teams can grow much more complex
entities in four months than they can build.

The same benefits can be realized on large projects as on
my small ones {13}.

5.4 Great Designers

The central question in how to improve the software art
centers, as it always has, in people.

We can get good designs by following good practices in-
stead ofpoor ones. Good design practices can be taught.
Programmers are among the most intelligent part of the
population, so they can learn good practice. Thus a major
thrust in the United States is to promulgate good modern
practice. New curricula, new literature, new organizations
such as the Software Engineering Institute, all have come
into being in order to raise the level of our practice from
poor to good. This is entirely proper.

Nevertheless, I do not believe we can make the next step
upward in the same way. Whereas the difference between
poor conceptual designs and good ones may lie inthe sound-
ness ofdesign method, the difference between good designs
and great ones surely does not. Great designs come from
great designers. Softwareconstruction is a creativeprocess.
Sound methodologycan empower and liberate the creative
mind; it cannot enflame or inspire the drudge.

The differencesare not minor - it is rather like Salieri and
Mozart. Study afterstudy show that the verybest designers
produce structures that are

faster,

smaller,simpler, cleaner,
and produced with less effort. The differences between the
great and the averageapproach an orderof magnitude.

A little retrospection shows that although many

fine,

use-
ful software systems have been designed by committees
and built by multipart projects, those software systems
that have excited passionate fans are those which are the
products of one or a few designing minds, great designers.
Consider Unix, APL, Pascal, Modula, the Smalltalk inter-

face,

even Fortran; and contrast with

Cobol,

PL/I, Algol,

MVS/370,

and MS-DOS.

Hence, although I strongly support the technology transfer
and curriculum developmenteffortsnow underway, I think
the most importantsingle effortwe can mount is to develop
ways to grow great designers.

No softwareorganization can ignore this challenge. Good
managers, scarce though they be, are no scarcer than good
designers. Great designers and great managers are both
very rare. Most organizations spend considerable effort in
finding and cultivating the management prospects; I know
of none that spends equal effort in finding and developing
the great designers upon whom the technical excellence of
the products will ultimately depend.

My first proposal is that each software organization must
determineand proclaim that great designers are as impor-
tant to its success as great managers are, and that they
can be expected to be similarly nurtured and rewarded.
Not only salary, but the perquisites of recognition - of-
fice size, furnishings, personal technical equipment, travel

1076

F. P. Brooks
i

w

t5

funds,

staffsupport - must be fully equivalent.

How to grow great designers? Space does not permit a
lengthy discussion,but some steps are obvious:

Systematically identify top designers as early as possi-
ble. The best are often not the most experienced.
Assign a career mentor to be responsible for the devel-
opment of the pjospect, and keep a careful career file.
Devise and maintaina career developmentplan for each
prospect, including carefully selected apprenticeships
with top designers, episodesof advancedformal educa-
tion,and short courses,all interspersed with solo design
and technical leadership assignments.
Provide opportunities for growing designers to interact
with and stimulate each other.

ACKNOWLEDGEMENTS

I thank Gordon Bell, Bruce Buchanan, Rick Hayes-Roth,
Robert Patrick, and, most especially, David Parnas for their
insights and stimulating ideas, and Rebekah Bierly for tech-
nical production.

REFERENCES
{1} Parnas, D.L., Designing Softwarefor Ease ofExten-

sion and

Contraction,

lEEE Trans, on

SE,

vol. 5,
no. 2, March, 1979, 128-138.

{2} Booch,

G.,

Object-Oriented Design, Software Engi-
neering with Ada, Benjamin/Cummings,Menlo Park,

CA,

1983.

{3} Mostow, J., editor, Special Issue on Artificial Intelli-
gence and Software Engineering, lEEE

Trans,

on

SE,

vol. 11, no. 11, November, 1985.

{4} Parnas, D.L., Software Aspects of Strategic Defense
Systems, American

Scientist,

November, 1985.

{5} Balzer, R., A 15-Year Perspective on Automatic
Programming, in Mostow, Special Issue on Artificial
Intelligence and Software Engineering, lEEE

Trans,

on

SE,

vol. 11, no. 11, November, 1985, 1257-1267.

{6} Mostow,J.

t

editor, Special Issue on Artificial Intelli-
gence and Software Engineering, lEEE

Trans,

on
SE,yol ll.no. 11, November 1985.

{7} Balzer, R., A 15-Year Perspective on Automatic
Programming, in Mostow, Special Issue on Artificial
Intelligence and Software Engineering, lEEE

Trans,

on

SE,

vol. 11, no. 11, November, 1985, 1257-1267.

{8} Parnas, D.L., Software Aspectß of Strategic Defense
Systems, American

Scientist,

November, 1985.

{9} Graphton,R.B. it T. Ichikawa, eds., Special Issue on
Visual Programming, Computer, vol. 18, no. 8,
August, 1985.

{10} Raeder,

G.,

A Survey of Current GraphicalPro-
grammingTechniques, in Grafton k. Ichikawa, eds.,
Special Issue on Visual Programming, Computer,
vol. 18,no. 8, August, 1985, 11-25.

{11} Brooks, F.P., The Mythical Man-Month,Addison
Wesley Publishing

Co.,

New York, 1975, Chapter 14.

{12} Millß,H.D., Top-Down Programming in Large Sys-
tems, in Debugging Techniques in Large Systems, R.
Ruskin cd., Prentice-Hall, 1971.

{13} Boehm, 8.W., A Spiral Model of Software Develop-
ment and Enhancement, TRW Technical Report,
1985.

